Ghosh, I., Tasissa, A., & Kümmerle, C. (2025). Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization. Advances in Neural Information Processing Systems, 37, 77226–77268. https://proceedings.neurips.cc/paper_files/paper/2024/hash/8d57f138d14fdfdc520eb29804116d9e-Abstract-Conference.html
Wang, Y., Huang, N., Li, T., Yan, Y., & Zhang, X. (2025). Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification. Advances in Neural Information Processing Systems, 37, 36314–36341. https://proceedings.neurips.cc/paper_files/paper/2024/hash/3fe2a777282299ecb4f9e7ebb531f0ab-Abstract-Conference.html
Zhang, Z., Song, T., Lee, Y., Yang, L., Peng, C., Chellappa, R., & Fan, D. (2025). LP-3DGS: Learning to Prune 3D Gaussian Splatting. Advances in Neural Information Processing Systems, 37, 122434–122457. https://proceedings.neurips.cc/paper_files/paper/2024/hash/dd51dbce305433cd60910dc5b0147be4-Abstract-Conference.html
Pinyoanuntapong, E., Saleem, M. U., Wang, P., Lee, M., Das, S., & Chen, C. (2025). BAMM: Bidirectional Autoregressive Motion Model. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), Computer Vision – ECCV 2024 (pp. 172–190). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72633-0_10
Song, Y., Pitafi, Z. F., Dou, F., Sun, J., Zhang, X., Phillips, B. G., & Song, W. (2024). Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 8(3), 124:1-124:25. https://doi.org/10.1145/3678514
Kümmerle, C., & Stöger, D. (2024). Linear Convergence of Iteratively Reweighted Least Squares for Nuclear Norm Minimization. 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), 1–5. https://doi.org/10.1109/SAM60225.2024.10636588
Poole, B., & Lee, M. (2024). Towards interactive reinforcement learning with intrinsic feedback. Neurocomput., 587(C). https://doi.org/10.1016/j.neucom.2024.127628
Uduehi, O., & Bunescu, R. (2024). An Expectation-Realization Model for Metaphor Detection. In D. Ghosh, S. Muresan, A. Feldman, T. Chakrabarty, & E. Liu (Eds.), Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024) (pp. 79–84). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.figlang-1.11
Al-Hossami, E., Bunescu, R., Smith, J., & Teehan, R. (2024). Can Language Models Employ the Socratic Method? Experiments with Code Debugging. Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, 53–59. https://doi.org/10.1145/3626252.3630799
Zhang, F., Yang, L., & Fan, D. (2024). Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM Memory. Proceedings of the 61st ACM/IEEE Design Automation Conference, 1–6. https://doi.org/10.1145/3649329.3657389
Howlader, P., Das, S., Le, H., & Samaras, D. (2024). Beyond Pixels: Semi-supervised Semantic Segmentation with a Multi-scale Patch-Based Multi-label Classifier. Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXV, 342–360. https://doi.org/10.1007/978-3-031-73226-3_20
Wu, C., Wang, H., Zhang, X., Fang, Z., & Bu, J. (2024). Spatio-temporal Heterogeneous Federated Learning for Time Series Classification with Multi-view Orthogonal Training. Proceedings of the 32nd ACM International Conference on Multimedia, 2613–2622. https://doi.org/10.1145/3664647.3680733
Wu, W., Zheng, C., Yang, Z., Chen, C., Das, S., & Lu, A. (2024). Frequency Guidance Matters: Skeletal Action Recognition by Frequency-Aware Mixed Transformer. Proceedings of the 32nd ACM International Conference on Multimedia, 4660–4669. https://doi.org/10.1145/3664647.3681009
Chen, X., Kümmerle, C., & Wang, R. (2024). Sparse Recovery for Overcomplete Frames: Sensing Matrices and Recovery Guarantees. CoRR, abs/2408.16166. https://doi.org/10.48550/ARXIV.2408.16166
Pinyoanuntapong, E., Wang, P., Lee, M., & Chen, C. (2024). MMM: Generative Masked Motion Model. 1546–1555. https://openaccess.thecvf.com/content/CVPR2024/html/Pinyoanuntapong_MMM_Generative_Masked_Motion_Model_CVPR_2024_paper.html
Wang, Y., Gong, Y., & Zeng, Y. (2024). Hyb-NeRF: A Multiresolution Hybrid Encoding for Neural Radiance Fields. 3689–3698. https://openaccess.thecvf.com/content/WACV2024/html/Wang_Hyb-NeRF_A_Multiresolution_Hybrid_Encoding_for_Neural_Radiance_Fields_WACV_2024_paper.html
K, A. C., A V, A., Das, S., & Das, A. (2024). Latent Flow Diffusion for Deepfake Video Generation. 3781–3790. https://openaccess.thecvf.com/content/CVPR2024W/DFAD/html/K_Latent_Flow_Diffusion_for_Deepfake_Video_Generation_CVPRW_2024_paper.html
Kapse, S., Pati, P., Das, S., Zhang, J., Chen, C., Vakalopoulou, M., Saltz, J., Samaras, D., Gupta, R. R., & Prasanna, P. (2024). SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology. 11226–11237. https://openaccess.thecvf.com/content/CVPR2024/html/Kapse_SI-MIL_Taming_Deep_MIL_for_Self-Interpretability_in_Gigapixel_Histopathology_CVPR_2024_paper.html
Dutta, A., Das, S., Nielsen, J., Chakraborty, R., & Shah, M. (2024). Multiview Aerial Visual RECognition (MAVREC): Can Multi-view Improve Aerial Visual Perception? 22678–22690. https://openaccess.thecvf.com/content/CVPR2024/html/Dutta_Multiview_Aerial_Visual_RECognition_MAVREC_Can_Multi-view_Improve_Aerial_Visual_CVPR_2024_paper.html
Reilly, D., & Das, S. (2024). Just Add π! Pose Induced Video Transformers for Understanding Activities of Daily Living. 18340–18350. https://openaccess.thecvf.com/content/CVPR2024/html/Reilly_Just_Add__Pose_Induced_Video_Transformers_for_Understanding_Activities_CVPR_2024_paper.html
Kapse, S., Das, S., Zhang, J., Gupta, R. R., Saltz, J., Samaras, D., & Prasanna, P. (2023). Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning (arXiv:2309.06439). arXiv. https://doi.org/10.48550/arXiv.2309.06439
Dai, R., Das, S., Ryoo, M. S., & Bremond, F. (2023). AAN: Attributes-Aware Network for Temporal Action Detection (arXiv:2309.00696). arXiv. https://doi.org/10.48550/arXiv.2309.00696
Balaji, P., Das, A., Das, S., & Dantcheva, A. (2023). Attending Generalizability in Course of Deep Fake Detection by Exploring Multi-task Learning (arXiv:2308.13503). arXiv. https://doi.org/10.48550/arXiv.2308.13503
Kümmerle, C., & Maly, J. (2023). Recovering Simultaneously Structured Data via Non-Convex Iteratively Reweighted Least Squares (arXiv:2306.04961). arXiv. https://doi.org/10.48550/arXiv.2306.04961
Reilly, D., Chadha, A., & Das, S. (2023). Seeing the Pose in the Pixels: Learning Pose-Aware Representations in Vision Transformers (arXiv:2306.09331). arXiv. https://doi.org/10.48550/arXiv.2306.09331
Wu, L., Wang, H., Chen, Y., Zhang, X., Zhang, T., Shen, N., Tao, G., Sun, Z., Ding, Y., Wang, W., & Bu, J. (2023). Beyond radiologist-level liver lesion detection on multi-phase contrast-enhanced CT images by deep learning. iScience, 26(11), 108183. https://doi.org/10.1016/j.isci.2023.108183
Das, S., Jain, T., Reilly, D., Balaji, P., Karmakar, S., Marjit, S., Li, X., Das, A., & Ryoo, M. (2023). Limited Data, Unlimited Potential: A Study on ViTs Augmented by Masked Autoencoders (arXiv:2310.20704). arXiv. https://doi.org/10.48550/arXiv.2310.20704
Zhang, X., & Li, X. (Eds.). (2023). Deep Learning Architecture and Applications. MDPI - Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/books978-3-0365-8831-5
Li, X., Shang, J., Das, S., & Ryoo, M. S. (2023). Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels? (arXiv:2206.05266). arXiv. https://doi.org/10.48550/arXiv.2206.05266
Shang, J., Das, S., & Ryoo, M. S. (2023). Learning Viewpoint-Agnostic Visual Representations by Recovering Tokens in 3D Space (arXiv:2206.11895). arXiv. https://doi.org/10.48550/arXiv.2206.11895
Peng, L., Kümmerle, C., & Vidal, R. (2023). On the Convergence of IRLS and Its Variants in Outlier-Robust Estimation. 17808–17818. https://openaccess.thecvf.com/content/CVPR2023/html/Peng_On_the_Convergence_of_IRLS_and_Its_Variants_in_Outlier-Robust_CVPR_2023_paper.html
Yang, L., Rakin, A. S., & Fan, D. (2022). RepNet: Efficient On-Device Learning via Feature Reprogramming. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12267–12276. https://doi.org/10.1109/CVPR52688.2022.01196
Guédon, O., Krahmer, F., Kümmerle, C., Mendelson, S., & Rauhut, H. (2022). On the geometry of polytopes generated by heavy-tailed random vectors. Communications in Contemporary Mathematics, 24(03), 2150056. https://doi.org/10.1142/S0219199721500565
Dai, R., Das, S., Kahatapitiya, K., Ryoo, M. S., & Bremond, F. (2022). MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection (arXiv:2112.03902). arXiv. https://doi.org/10.48550/arXiv.2112.03902
Zhang, X., Zeman, M., Tsiligkaridis, T., & Zitnik, M. (2022). Graph-Guided Network for Irregularly Sampled Multivariate Time Series (arXiv:2110.05357). arXiv. https://doi.org/10.48550/arXiv.2110.05357
Lin, S., Yang, L., Fan, D., & Zhang, J. (2022). TRGP: Trust Region Gradient Projection for Continual Learning (arXiv:2202.02931). arXiv. https://doi.org/10.48550/arXiv.2202.02931
Zhang, X., Zhao, Z., Tsiligkaridis, T., & Zitnik, M. (2022). Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency. Advances in Neural Information Processing Systems, 35, 3988–4003. https://proceedings.neurips.cc/paper_files/paper/2022/hash/194b8dac525581c346e30a2cebe9a369-Abstract-Conference.html
Kümmerle, C., Maggioni, M., & Tang, S. (2022). Learning Transition Operators From Sparse Space-Time Samples (arXiv:2212.00746). arXiv. https://doi.org/10.48550/arXiv.2212.00746
Abdalla, P., & Kümmerle, C. (2022). Dictionary-sparse recovery from heavy-tailed measurements. Information and Inference: A Journal of the IMA, 11(4), 1501–1526. https://doi.org/10.1093/imaiai/iaac003
Poole, B., & Lee, M. (2022). Error-related Potential Variability: Exploring the Effects on Classification and Transferability. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 193–200. https://doi.org/10.1109/SSCI51031.2022.10022137
Krahmer, F., Kümmerle, C., & Melnyk, O. (2022). On the robustness of noise-blind low-rank recovery from rank-one measurements. Linear Algebra and Its Applications, 652, 37–81. https://doi.org/10.1016/j.laa.2022.07.002
Wang, Y., Khalili, M. M., & Zhang, X. (2022). Towards Fair Representation Learning in Knowledge Graph with Stable Adversarial Debiasing. 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 901–909. https://doi.org/10.1109/ICDMW58026.2022.00119
Peng, L., Kümmerle, C., & Vidal, R. (2022). Global Linear and Local Superlinear Convergence of IRLS for Non-Smooth Robust Regression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 28972–28987). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/ba3354bcfeae4f166a8bfe75443ac8f7-Paper-Conference.pdf
Bai, L., Yao, L., Wang, X., Li, C., & Zhang, X. (2021). Deep spatial–temporal sequence modeling for multi-step passenger demand prediction. Future Generation Computer Systems, 121, 25–34. https://doi.org/10.1016/j.future.2021.03.003
Kümmerle, C., & Verdun, C. M. (2021). A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples. Proceedings of the 38th International Conference on Machine Learning, 5872–5883. https://proceedings.mlr.press/v139/kummerle21a.html
Wang, L., Zhang, X., Jiang, Y., Zhang, Y., Xu, C., Gao, R., & Zhang, D. (2021). Watching Your Phone’s Back: Gesture Recognition by Sensing Acoustical Structure-borne Propagation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(2), 82:1-82:26. https://doi.org/10.1145/3463522
Yang, L., He, Z., Zhang, J., & Fan, D. (2021). KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask Learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13840–13848. https://doi.org/10.1109/CVPR46437.2021.01363
Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., & Zhang, Y. (2021). A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 18(3), 031002. https://doi.org/10.1088/1741-2552/abc902
Zhang, X., Sumathipala, M., & Zitnik, M. (2021). Population-scale identification of differential adverse events before and during a pandemic. Nature Computational Science, 1(10), 666–677. https://doi.org/10.1038/s43588-021-00138-4
Kümmerle, C., Mayrink Verdun, C., & Stöger, D. (2021). Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear Convergence Rate. Advances in Neural Information Processing Systems, 34, 2873–2886. https://proceedings.neurips.cc/paper_files/paper/2021/hash/16bda725ae44af3bb9316f416bd13b1b-Abstract.html
Zhang, X., Yao, L., Huang, C., Kanhere, S. S., Zhang, D., & Zhang, Y. (2020). Brain2Object: Printing Your Mind from Brain Signals with Spatial Correlation Embedding (arXiv:1810.02223). arXiv. https://doi.org/10.48550/arXiv.1810.02223
Zhang, X., Yao, L., Huang, C., Gu, T., Yang, Z., & Liu, Y. (2020). DeepKey: A Multimodal Biometric Authentication System via Deep Decoding Gaits and Brainwaves. ACM Transactions on Intelligent Systems and Technology, 11(4), 49:1-49:24. https://doi.org/10.1145/3393619
Xu, W., Zhang, X., Yao, L., Xue, W., & Wei, B. (2020). A multi-view CNN-based acoustic classification system for automatic animal species identification. Ad Hoc Networks, 102, 102115. https://doi.org/10.1016/j.adhoc.2020.102115
Yang, L., He, Z., & Fan, D. (2020). Harmonious Coexistence of Structured Weight Pruning and Ternarization for Deep Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 6623–6630. https://doi.org/10.1609/aaai.v34i04.6138
Zhang, X., Chen, X., Dong, M., Liu, H., Ge, C., & Yao, L. (2020). Multi-task Generative Adversarial Learning on Geometrical Shape Reconstruction from EEG Brain Signals (arXiv:1907.13351). arXiv. https://doi.org/10.48550/arXiv.1907.13351
Huang, C., Yao, L., Wang, X., Benatallah, B., & Zhang, X. (2020). Software expert discovery via knowledge domain embeddings in a collaborative network. Pattern Recognition Letters, 130, 46–53. https://doi.org/10.1016/j.patrec.2018.10.030
Zhang, S., Yao, L., Wu, B., Xu, X., Zhang, X., & Zhu, L. (2020). Unraveling Metric Vector Spaces With Factorization for Recommendation. IEEE Transactions on Industrial Informatics, 16(2), 732–742. https://doi.org/10.1109/TII.2019.2947112
Zhang, X., Yao, L., Dong, M., Liu, Z., Zhang, Y., & Li, Y. (2020). Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE Journal of Biomedical and Health Informatics, 24(10), 2852–2859. https://doi.org/10.1109/JBHI.2020.2971610
Zhang, X., & Zitnik, M. (2020). GNNGuard: Defending Graph Neural Networks against Adversarial Attacks. Advances in Neural Information Processing Systems, 33, 9263–9275. https://proceedings.neurips.cc/paper/2020/hash/690d83983a63aa1818423fd6edd3bfdb-Abstract.html
Zhang, X., Yao, L., Wang, X., Zhang, W., Zhang, S., & Liu, Y. (2019). Know Your Mind: Adaptive Brain Signal Classification with Reinforced Attentive Convolutional Neural Networks (arXiv:1802.03996). arXiv. https://doi.org/10.48550/arXiv.1802.03996
Zhang, X., Yao, L., & Yuan, F. (2019). Adversarial Variational Embedding for Robust Semi-supervised Learning. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 139–147. https://doi.org/10.1145/3292500.3330966
Dong, M., Yao, L., Wang, X., Benatallah, B., Zhang, X., & Sheng, Q. Z. (2019). Dual-stream Self-Attentive Random Forest for False Information Detection. 2019 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2019.8851765
Kümmerle, C., & Verdun, C. M. (2019). Completion of Structured Low-Rank Matrices via Iteratively Reweighted Least Squares. 2019 13th International Conference on Sampling Theory and Applications (SampTA), 1–5. https://doi.org/10.1109/SampTA45681.2019.9030959
Zhang, X., Yao, L., Zhang, S., Kanhere, S., Sheng, M., & Liu, Y. (2019). Internet of Things Meets Brain–Computer Interface: A Unified Deep Learning Framework for Enabling Human-Thing Cognitive Interactivity. IEEE Internet of Things Journal, 6(2), 2084–2092. https://doi.org/10.1109/JIOT.2018.2877786
Zhang, X., Chen, X., Yao, L., Ge, C., & Dong, M. (2019). Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural Information Processing (pp. 287–295). Springer International Publishing. https://doi.org/10.1007/978-3-030-36808-1_31
Chen, X., Huang, C., Zhang, X., Wang, X., Liu, W., & Yao, L. (2019). Expert2Vec: Distributed Expert Representation Learning in Question Answering Community. In J. Li, S. Wang, S. Qin, X. Li, & S. Wang (Eds.), Advanced Data Mining and Applications (pp. 288–301). Springer International Publishing. https://doi.org/10.1007/978-3-030-35231-8_21
Zhang, X., Yao, L., Kanhere, S. S., Liu, Y., Gu, T., & Chen, K. (2018). MindID: Person Identification from Brain Waves through Attention-based Recurrent Neural Network. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 149:1-149:23. https://doi.org/10.1145/3264959
Krahmer, F., Kümmerle, C., & Rauhut, H. (2018). A Quotient Property for Matrices with Heavy-Tailed Entries and its Application to Noise-Blind Compressed Sensing (arXiv:1806.04261). arXiv. https://doi.org/10.48550/arXiv.1806.04261
Chen, W., Wang, S., Zhang, X., Yao, L., Yue, L., Qian, B., & Li, X. (2018). EEG-based Motion Intention Recognition via Multi-task RNNs. In Proceedings of the 2018 SIAM International Conference on Data Mining (SDM) (pp. 279–287). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611975321.32
Zhang, X., Yao, L., Huang, C., Wang, S., Tan, M., Long, G., & Wang, C. (2018). Multi-modality Sensor Data Classification with Selective Attention (arXiv:1804.05493). arXiv. https://doi.org/10.48550/arXiv.1804.05493
Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R., & Benatallah, B. (2018). Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Article 1. https://doi.org/10.1609/aaai.v32i1.11496
Zhang, X., Yao, L., Sheng, Q. Z., Kanhere, S. S., Gu, T., & Zhang, D. (2018). Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals. 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), 1–10. https://doi.org/10.1109/PERCOM.2018.8444575
Zhang, X. (2018). Context-aware Human Intent Inference for Improving Human Machine Cooperation. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 456–457. https://doi.org/10.1109/PERCOMW.2018.8480331
Ning, X., Yao, L., Wang, X., Benatallah, B., Zhang, S., & Zhang, X. (2018). Data-Augmented Regression with Generative Convolutional Network. In H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, & R. Zhou (Eds.), Web Information Systems Engineering – WISE 2018 (pp. 301–311). Springer International Publishing. https://doi.org/10.1007/978-3-030-02925-8_21
Kümmerle, C., & Sigl, J. (2018). Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery. Journal of Machine Learning Research, 19(47), 1–49. http://jmlr.org/papers/v19/17-244.html
Zhang, X., Yao, L., Zhang, D., Wang, X., Sheng, Q. Z., & Gu, T. (2017). Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 28–37. https://doi.org/10.1145/3144457.3144477
Zhang, X., Yao, L., Huang, C., Sheng, Q. Z., & Wang, X. (2017). Intent Recognition in Smart Living Through Deep Recurrent Neural Networks. In D. Liu, S. Xie, Y. Li, D. Zhao, & E.-S. M. El-Alfy (Eds.), Neural Information Processing (pp. 748–758). Springer International Publishing. https://doi.org/10.1007/978-3-319-70096-0_76
Yang, et al. - 2021 - KSM Fast Multiple Task Adaption via Kernel-wise S.pdf. (n.d.). Retrieved September 14, 2023, from https://openaccess.thecvf.com/content/CVPR2021/papers/Yang_KSM_Fast_Multiple_Task_Adaption_via_Kernel-Wise_Soft_Mask_Learning_CVPR_2021_paper.pdf
Yang, et al. - Get More at Once Alternating Sparse Training with.pdf. (n.d.). Retrieved September 14, 2023, from https://proceedings.neurips.cc/paper_files/paper/2022/file/c7207c38b6e809a83d0688936a91c3b5-Paper-Conference.pdf
Yang, L., Meng, J., Seo, J.-S., & Fan, D. (n.d.). Get More at Once: Alternating Sparse Training with Gradient Correction.
Yang, et al. - 2022 - RepNet Efficient On-Device Learning via Feature R.pdf. (n.d.). Retrieved September 14, 2023, from https://openaccess.thecvf.com/content/CVPR2022/papers/Yang_Rep-Net_Efficient_On-Device_Learning_via_Feature_Reprogramming_CVPR_2022_paper.pdf