Wang, Y., Huang, N., Li, T., Yan, Y., & Zhang, X. (2025). Medformer: A Multi-Granularity Patching Transformer for Medical Time-Series Classification. Advances in Neural Information Processing Systems, 37, 36314–36341. link
Ghosh, I., Tasissa, A., & Kümmerle, C. (2025). Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization. Advances in Neural Information Processing Systems, 37, 77226–77268. link
Zhang, Z., Song, T., Lee, Y., Yang, L., Peng, C., Chellappa, R., & Fan, D. (2025). LP-3DGS: Learning to Prune 3D Gaussian Splatting. Advances in Neural Information Processing Systems, 37, 122434–122457. link
Pinyoanuntapong, E., Saleem, M. U., Wang, P., Lee, M., Das, S., & Chen, C. (2025). BAMM: Bidirectional Autoregressive Motion Model. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), Computer Vision – ECCV 2024 (pp. 172–190). Springer Nature Switzerland. link
Song, Y., Pitafi, Z. F., Dou, F., Sun, J., Zhang, X., Phillips, B. G., & Song, W. (2024). Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 8(3), 124:1-124:25. link
Kümmerle, C., & Stöger, D. (2024). Linear Convergence of Iteratively Reweighted Least Squares for Nuclear Norm Minimization. 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), 1–5. link
Poole, B., & Lee, M. (2024). Towards interactive reinforcement learning with intrinsic feedback. Neurocomput., 587(C). link
Uduehi, O., & Bunescu, R. (2024). An Expectation-Realization Model for Metaphor Detection. In D. Ghosh, S. Muresan, A. Feldman, T. Chakrabarty, & E. Liu (Eds.), Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024) (pp. 79–84). Association for Computational Linguistics. link
Al-Hossami, E., Bunescu, R., Smith, J., & Teehan, R. (2024). Can Language Models Employ the Socratic Method? Experiments with Code Debugging. Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, 53–59. link
Zhang, F., Yang, L., & Fan, D. (2024). Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM Memory. Proceedings of the 61st ACM/IEEE Design Automation Conference, 1–6. link
Howlader, P., Das, S., Le, H., & Samaras, D. (2024). Beyond Pixels: Semi-supervised Semantic Segmentation with a Multi-scale Patch-Based Multi-label Classifier. Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXV, 342–360. link
Wu, C., Wang, H., Zhang, X., Fang, Z., & Bu, J. (2024). Spatio-temporal Heterogeneous Federated Learning for Time Series Classification with Multi-view Orthogonal Training. Proceedings of the 32nd ACM International Conference on Multimedia, 2613–2622. link
Wu, W., Zheng, C., Yang, Z., Chen, C., Das, S., & Lu, A. (2024). Frequency Guidance Matters: Skeletal Action Recognition by Frequency-Aware Mixed Transformer. Proceedings of the 32nd ACM International Conference on Multimedia, 4660–4669. link
K, A. C., A V, A., Das, S., & Das, A. (2024). Latent Flow Diffusion for Deepfake Video Generation. 3781–3790. link
Wang, Y., Gong, Y., & Zeng, Y. (2024). Hyb-NeRF: A Multiresolution Hybrid Encoding for Neural Radiance Fields. 3689–3698. link
Chen, X., Kümmerle, C., & Wang, R. (2024). Sparse Recovery for Overcomplete Frames: Sensing Matrices and Recovery Guarantees. CoRR, abs/2408.16166. link
Dutta, A., Das, S., Nielsen, J., Chakraborty, R., & Shah, M. (2024). Multiview Aerial Visual RECognition (MAVREC): Can Multi-view Improve Aerial Visual Perception? 22678–22690. link
Pinyoanuntapong, E., Wang, P., Lee, M., & Chen, C. (2024). MMM: Generative Masked Motion Model. 1546–1555. link
Reilly, D., & Das, S. (2024). Just Add π! Pose Induced Video Transformers for Understanding Activities of Daily Living. 18340–18350. link
Kapse, S., Pati, P., Das, S., Zhang, J., Chen, C., Vakalopoulou, M., Saltz, J., Samaras, D., Gupta, R. R., & Prasanna, P. (2024). SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology. 11226–11237. link
Kapse, S., Das, S., Zhang, J., Gupta, R. R., Saltz, J., Samaras, D., & Prasanna, P. (2023). Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning (arXiv:2309.06439). arXiv. link
Dai, R., Das, S., Ryoo, M. S., & Bremond, F. (2023). AAN: Attributes-Aware Network for Temporal Action Detection (arXiv:2309.00696). arXiv. link
Balaji, P., Das, A., Das, S., & Dantcheva, A. (2023). Attending Generalizability in Course of Deep Fake Detection by Exploring Multi-task Learning (arXiv:2308.13503). arXiv. link
Kümmerle, C., & Maly, J. (2023). Recovering Simultaneously Structured Data via Non-Convex Iteratively Reweighted Least Squares (arXiv:2306.04961). arXiv. link
Reilly, D., Chadha, A., & Das, S. (2023). Seeing the Pose in the Pixels: Learning Pose-Aware Representations in Vision Transformers (arXiv:2306.09331). arXiv. link
Wu, L., Wang, H., Chen, Y., Zhang, X., Zhang, T., Shen, N., Tao, G., Sun, Z., Ding, Y., Wang, W., & Bu, J. (2023). Beyond radiologist-level liver lesion detection on multi-phase contrast-enhanced CT images by deep learning. iScience, 26(11), 108183. link
Das, S., Jain, T., Reilly, D., Balaji, P., Karmakar, S., Marjit, S., Li, X., Das, A., & Ryoo, M. (2023). Limited Data, Unlimited Potential: A Study on ViTs Augmented by Masked Autoencoders (arXiv:2310.20704). arXiv. link
Zhang, X., & Li, X. (Eds.). (2023). Deep Learning Architecture and Applications. MDPI - Multidisciplinary Digital Publishing Institute. link
Li, X., Shang, J., Das, S., & Ryoo, M. S. (2023). Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels? (arXiv:2206.05266). arXiv. link
Shang, J., Das, S., & Ryoo, M. S. (2023). Learning Viewpoint-Agnostic Visual Representations by Recovering Tokens in 3D Space (arXiv:2206.11895). arXiv. link
Peng, L., Kümmerle, C., & Vidal, R. (2023). On the Convergence of IRLS and Its Variants in Outlier-Robust Estimation. 17808–17818. link
Yang, L., Rakin, A. S., & Fan, D. (2022). RepNet: Efficient On-Device Learning via Feature Reprogramming. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12267–12276. link
Guédon, O., Krahmer, F., Kümmerle, C., Mendelson, S., & Rauhut, H. (2022). On the geometry of polytopes generated by heavy-tailed random vectors. Communications in Contemporary Mathematics, 24(03), 2150056. link
Dai, R., Das, S., Kahatapitiya, K., Ryoo, M. S., & Bremond, F. (2022). MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection (arXiv:2112.03902). arXiv. link
Zhang, X., Zeman, M., Tsiligkaridis, T., & Zitnik, M. (2022). Graph-Guided Network for Irregularly Sampled Multivariate Time Series (arXiv:2110.05357). arXiv. link
Lin, S., Yang, L., Fan, D., & Zhang, J. (2022). TRGP: Trust Region Gradient Projection for Continual Learning (arXiv:2202.02931). arXiv. link
Zhang, X., Zhao, Z., Tsiligkaridis, T., & Zitnik, M. (2022). Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency. Advances in Neural Information Processing Systems, 35, 3988–4003. link
Abdalla, P., & Kümmerle, C. (2022). Dictionary-sparse recovery from heavy-tailed measurements. Information and Inference: A Journal of the IMA, 11(4), 1501–1526. link
Kümmerle, C., Maggioni, M., & Tang, S. (2022). Learning Transition Operators From Sparse Space-Time Samples (arXiv:2212.00746). arXiv. link
Poole, B., & Lee, M. (2022). Error-related Potential Variability: Exploring the Effects on Classification and Transferability. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 193–200. link
Krahmer, F., Kümmerle, C., & Melnyk, O. (2022). On the robustness of noise-blind low-rank recovery from rank-one measurements. Linear Algebra and Its Applications, 652, 37–81. link
Wang, Y., Khalili, M. M., & Zhang, X. (2022). Towards Fair Representation Learning in Knowledge Graph with Stable Adversarial Debiasing. 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 901–909. link
Peng, L., Kümmerle, C., & Vidal, R. (2022). Global Linear and Local Superlinear Convergence of IRLS for Non-Smooth Robust Regression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 28972–28987). Curran Associates, Inc. link
Bai, L., Yao, L., Wang, X., Li, C., & Zhang, X. (2021). Deep spatial–temporal sequence modeling for multi-step passenger demand prediction. Future Generation Computer Systems, 121, 25–34. link
Kümmerle, C., & Verdun, C. M. (2021). A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples. Proceedings of the 38th International Conference on Machine Learning, 5872–5883. link
Wang, L., Zhang, X., Jiang, Y., Zhang, Y., Xu, C., Gao, R., & Zhang, D. (2021). Watching Your Phone’s Back: Gesture Recognition by Sensing Acoustical Structure-borne Propagation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(2), 82:1-82:26. link
Yang, L., He, Z., Zhang, J., & Fan, D. (2021). KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask Learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13840–13848. link
Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., & Zhang, Y. (2021). A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 18(3), 031002. link
Zhang, X., Sumathipala, M., & Zitnik, M. (2021). Population-scale identification of differential adverse events before and during a pandemic. Nature Computational Science, 1(10), 666–677. link
Kümmerle, C., Mayrink Verdun, C., & Stöger, D. (2021). Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear Convergence Rate. Advances in Neural Information Processing Systems, 34, 2873–2886. link
Zhang, X., Yao, L., Huang, C., Kanhere, S. S., Zhang, D., & Zhang, Y. (2020). Brain2Object: Printing Your Mind from Brain Signals with Spatial Correlation Embedding (arXiv:1810.02223). arXiv. link
Zhang, X., Yao, L., Huang, C., Gu, T., Yang, Z., & Liu, Y. (2020). DeepKey: A Multimodal Biometric Authentication System via Deep Decoding Gaits and Brainwaves. ACM Transactions on Intelligent Systems and Technology, 11(4), 49:1-49:24. link
Xu, W., Zhang, X., Yao, L., Xue, W., & Wei, B. (2020). A multi-view CNN-based acoustic classification system for automatic animal species identification. Ad Hoc Networks, 102, 102115. link
Yang, L., He, Z., & Fan, D. (2020). Harmonious Coexistence of Structured Weight Pruning and Ternarization for Deep Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 6623–6630. link
Zhang, X., Chen, X., Dong, M., Liu, H., Ge, C., & Yao, L. (2020). Multi-task Generative Adversarial Learning on Geometrical Shape Reconstruction from EEG Brain Signals (arXiv:1907.13351). arXiv. link
Huang, C., Yao, L., Wang, X., Benatallah, B., & Zhang, X. (2020). Software expert discovery via knowledge domain embeddings in a collaborative network. Pattern Recognition Letters, 130, 46–53. link
Zhang, S., Yao, L., Wu, B., Xu, X., Zhang, X., & Zhu, L. (2020). Unraveling Metric Vector Spaces With Factorization for Recommendation. IEEE Transactions on Industrial Informatics, 16(2), 732–742. link
Zhang, X., Yao, L., Dong, M., Liu, Z., Zhang, Y., & Li, Y. (2020). Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE Journal of Biomedical and Health Informatics, 24(10), 2852–2859. link
Zhang, X., & Zitnik, M. (2020). GNNGuard: Defending Graph Neural Networks against Adversarial Attacks. Advances in Neural Information Processing Systems, 33, 9263–9275. link
Zhang, X., Yao, L., Wang, X., Zhang, W., Zhang, S., & Liu, Y. (2019). Know Your Mind: Adaptive Brain Signal Classification with Reinforced Attentive Convolutional Neural Networks (arXiv:1802.03996). arXiv. link
Zhang, X., Yao, L., & Yuan, F. (2019). Adversarial Variational Embedding for Robust Semi-supervised Learning. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 139–147. link
Dong, M., Yao, L., Wang, X., Benatallah, B., Zhang, X., & Sheng, Q. Z. (2019). Dual-stream Self-Attentive Random Forest for False Information Detection. 2019 International Joint Conference on Neural Networks (IJCNN), 1–8. link
Kümmerle, C., & Verdun, C. M. (2019). Completion of Structured Low-Rank Matrices via Iteratively Reweighted Least Squares. 2019 13th International Conference on Sampling Theory and Applications (SampTA), 1–5. link
Zhang, X., Yao, L., Zhang, S., Kanhere, S., Sheng, M., & Liu, Y. (2019). Internet of Things Meets Brain–Computer Interface: A Unified Deep Learning Framework for Enabling Human-Thing Cognitive Interactivity. IEEE Internet of Things Journal, 6(2), 2084–2092. link
Chen, X., Huang, C., Zhang, X., Wang, X., Liu, W., & Yao, L. (2019). Expert2Vec: Distributed Expert Representation Learning in Question Answering Community. In J. Li, S. Wang, S. Qin, X. Li, & S. Wang (Eds.), Advanced Data Mining and Applications (pp. 288–301). Springer International Publishing. link
Zhang, X., Chen, X., Yao, L., Ge, C., & Dong, M. (2019). Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural Information Processing (pp. 287–295). Springer International Publishing. link
Zhang, X., Yao, L., Kanhere, S. S., Liu, Y., Gu, T., & Chen, K. (2018). MindID: Person Identification from Brain Waves through Attention-based Recurrent Neural Network. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 149:1-149:23. link
Krahmer, F., Kümmerle, C., & Rauhut, H. (2018). A Quotient Property for Matrices with Heavy-Tailed Entries and its Application to Noise-Blind Compressed Sensing (arXiv:1806.04261). arXiv. link
Chen, W., Wang, S., Zhang, X., Yao, L., Yue, L., Qian, B., & Li, X. (2018). EEG-based Motion Intention Recognition via Multi-task RNNs. In Proceedings of the 2018 SIAM International Conference on Data Mining (SDM) (pp. 279–287). Society for Industrial and Applied Mathematics. link
Zhang, X., Yao, L., Huang, C., Wang, S., Tan, M., Long, G., & Wang, C. (2018). Multi-modality Sensor Data Classification with Selective Attention (arXiv:1804.05493). arXiv. link
Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R., & Benatallah, B. (2018). Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Article 1. link
Zhang, X., Yao, L., Sheng, Q. Z., Kanhere, S. S., Gu, T., & Zhang, D. (2018). Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals. 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), 1–10. link
Zhang, X. (2018). Context-aware Human Intent Inference for Improving Human Machine Cooperation. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 456–457. link
Ning, X., Yao, L., Wang, X., Benatallah, B., Zhang, S., & Zhang, X. (2018). Data-Augmented Regression with Generative Convolutional Network. In H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, & R. Zhou (Eds.), Web Information Systems Engineering – WISE 2018 (pp. 301–311). Springer International Publishing. link
Kümmerle, C., & Sigl, J. (2018). Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery. Journal of Machine Learning Research, 19(47), 1–49. http://jmlr.org/papers/v19/17-244.html
Zhang, X., Yao, L., Zhang, D., Wang, X., Sheng, Q. Z., & Gu, T. (2017). Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 28–37. link
Zhang, X., Yao, L., Huang, C., Sheng, Q. Z., & Wang, X. (2017). Intent Recognition in Smart Living Through Deep Recurrent Neural Networks. In D. Liu, S. Xie, Y. Li, D. Zhao, & E.-S. M. El-Alfy (Eds.), Neural Information Processing (pp. 748–758). Springer International Publishing. link
Yang, et al. - 2021 - KSM Fast Multiple Task Adaption via Kernel-wise S.pdf. (n.d.). Retrieved September 14, 2023, from link
Yang, et al. - 2022 - RepNet Efficient On-Device Learning via Feature R.pdf. (n.d.). Retrieved September 14, 2023, from link
Yang, et al. - Get More at Once Alternating Sparse Training with.pdf. (n.d.). Retrieved September 14, 2023, from link
Yang, L., Meng, J., Seo, J.-S., & Fan, D. (n.d.). Get More at Once: Alternating Sparse Training with Gradient Correction.